Introduction

This project focuses on creating a data warehouse for the Sakila database. The
sakila database is a popular MySQL database showing a business film rental activity.
It records the movies being rented out, the payments for each rental, the customer
details, and many other records. See more about it here.

Gustomer Data Inventary

country v
3 1 film_id SMALLINT category_id TINVINT
country_id SMALLINT

¥ cate id TINYINT B+——H- > name VARCHAR(25)
country VARCHAR(50) g .
last_update TIMESTAMP | last_update TIMESTAMP
last_update TIMESTAMP
> m] - -
v
ity | - filt_ii SMALLINT
©y- 10 SMALLINT i] customer - il VARCHAR(288) (=== [m=)
tescrption

city VARCHAR{SO) | cusiomer_id SMALLINT
& country_id SMALLINT & store_id TINYINT

e 4+ language_id TINYINT actor_id SMALLINT
T T name CHAR(20) first_name VARCHAR({45)
I

last_update TIMESTAMP

ame VARCHAR(4S)

> | :l address v me VARCHAR(45) e 1 —H- last_update TIMESTAMP last_name VARCHAR(45)
T address_id SMALLINT T VARCHAR{50) rertal_duration TINVINT | —— et vpante TIMES"M:
: address VARCHAR(50) 1 @ acress.d SMALLINT rental_rate DECIMAL(4.2) F====" —
f address2 VARCHAR(S0) | active BOOLEAN g, SMALLINT
[o district VARGHAR(20) L) create_dale DATETIME replacement cost DECIMAL(S 2) l
& city_id SMALLINT last_updale TIMESTAMP rting ENUWY.)
posial_code VARCHAR(10) > sovci b et
phone VARCHAR(20) T 7T Jast_update TMESTAMP o 1 actor_id SMALLINT
last_update TMESTAMP P > 1 < 1 fim_id SMALLINT
- b] > 1 last_update TIMESTAMP
! } } i »
Customer related data | b i limventoy
: } J l—— i inventor ry. 38 MEDIUMINT
| | } 777777777777777777777777 . # Him_id SMALLINT _
HHH, T B store_d TINVINT 1 fim_id SMALLINT
i ! e] 2 1as_upate TESTAP e VARCHAR255)
Business 1 H > §
To—-———-—- | ! Indexes description TEXT
! | Movie database ——
staif_id TN i i
first_name VARCHAR(45) | #- —' |
ast_nama VARCHAR(45) i
& address._id SMALLINT |
picture BLOB !
email VARGHAR(50) o
& store._id TINYINT : T film_list T nicer_but_slower film_list T Film v T Resources v
active BOOLEAN | film_in_stock get_customer_balance
usemame VARCHAR(16) : = actor_info film_not_in_stock inventory_held_by_cu..
passwort VARGHARAD) Ly — — — | oot et DATETIME | routnes
= 'NMESYAM: } payment id SMALLINT | & inventary_id MEDIUMINT :
—— | ® cusiomer_ld SMALLINT & customar_id SMALLINT B — — —! T sales by _store
! @ staft_id TINYINT retumn_date DATETIME
L — i< o rena Lid INT P sttt TINYINT = sales_by film_category
uuuuu 1 DECIMAL(S,2) last_update TMESTAMP
payment_ daie DATETIME S T et list) (75 customer_liat
last_update TIMESTAMP
»
—
Data required 1o run the business Special view on certain data used for appraisals

Figure 1: Sakila database schema

Several analyses can be drawn from this database, including sales-based analysis,
order-based analysis, customer-based analysis, etc. For this project we have
decided to pay attention on the inventory analysis.

For a rental business it is very paramount to the business owners to know at all point
what current stock of the movies are available at every given time, to also monitor
how the movies are moving, where they are at certain times. Hence, we will be
creating a data warehouse that helps the inventory manager keep tabs of all movies
in stock for every store of the business.

Building the Data Warehouse

The goal is to develop a data warehouse that integrates various dimensions like customers,
films, rentals, calendar, and store to have a unified view of the business operations. This
integration will allow for efficient inventory management, enhanced customer experience,
and optimized rental processes.

https://dev.mysql.com/doc/sakila/en/

The data warehouse answers one most important question amongst others; How
can we efficiently monitor and manage movie inventory across all store locations to
ensure optimal availability, and tracking of movie stock? To achieve this, we have
built a star schema that includes five (5) dimension tables and an inventory fact table
that records the total inventory quantity and the movie availability status. Here is
what the schema look like.

. Film_Dim
Customer_Dim
PK | EilmKey
PK | CustomerKey
FilmID
CustomeriD
Film_Name
First_Name
Ratings
Last_Name
Fact_Inventory FilmCategoryName
Postal_Code
InventorylD
City e
FK1| FilmKey
Country
FK2 | CustomerKey "
Active_Status Dim_Store
FK3 | CalendarKey
/ PK | StoreKey
FK4 | StoreKey
Storeld
FK5| RentalKey
Postal_Code
Dim_Calender Quantity
Manager_Name
PK | CalendarKey Stock_status
Manager_Email
FullDate
DayofWeek_
Last_Name
DayType
DayofMonth_ Dim_Rental
Month_ PK | RentalKey
Quarter_ RentallD
Year_ Rental_Date
Return_Date
Rental_Cost

Figure 2: Sakila Inventory datawarehouse

This data warehouse answers what we call the 3Ws; what movies are available,
when are they (or will they be) available, and lastly who has the rented movies. With
the selected details we can identify what quantity of movies the business has across
all stores, which of them are available and which isn’t, who has the rented movies,
and so on.

Purpose of the Tables

The film dimension table allows us capture what films we have in the database, the
total quantities, and their availability status. The rental dimension table allows us
capture what movies are currently rented out, the cost for rentals, the return date for
every rental, etc. and so on. The calendar dimension table helps us monitor the
dates rental activities in the database. With this we can tell the total inventory
available at every given date. The customer table helps us monitor what customers
have sets of the films across the globe, this makes it easy to track each movie rented
out. The store dimension table helps us monitor the inventory in each store at
every given time.

Business Objectives

From the data we seek to understand the following insights

1.

2.

3.

4.

5.

Determine the current inventory levels for each film in the database to
facilitate efficient stock management.

Calculate the total inventory across various store locations to optimize
distribution and ensure sufficient availability.

Analyze the geographic distribution of films to identify market trends and tailor
inventory strategies accordingly.

Identify movies with the highest quantities in the database to understand
popular demand and inform purchasing decisions.

Monitor stock levels to identify films at risk of running low and take proactive
measures to replenish inventory.

The key stakeholders will find these insights helpful are:

1.

2.

Business Analysts: They analyze the data for insights into customer preferences and
behavior.

Management Team: They utilize the insights derived from the data to make strategic
decisions.

Marketing Team: Insights into customer demographics and movie preferences can
inform targeted marketing campaigns to promote specific movies to likely renters.
Store Managers: Data from the warehouse can empower store managers to optimize
inventory levels at their specific stores, identify popular genres among their customer
base, and tailor promotions accordingly.

Designing the ETL

In this session we focus on extracting data from the database, manipulating them to
fit the records we want to store, and loading them into the data warehouse. We
achieve this process using the SQL Server Integration Services (SSIS)tool. The ETL
follows a simple plan; extract data from the database, transform it and load into our
database. Here is a visual representation of the idea.

SAKILA DATABASE INVENTORY DATA

SsIS WAREHOUSE

L@

EXTRACT TRANSFORM LOAD

-

oooLoLL{folLLO

poLfifLoLioLo

Figure 3: ETL process

Analytical Report

In this analysis, we seek to help stakeholders achieve certain insights from the data
warehouse using SQL Server Reporting Services (SSRS) and Tableau. We have
built visuals from both platforms to help give better understanding of the dataset.

Quarter Inventory for

each Year:

This report provides an

analysis of the inventory Year Quarter Total Inventory
levels for a company for

the years 2005 and 2006,

broken down by quarter. 2005 Q2 85338
The data in this report can

help the company make

informed decisions about Q3 281142

inventory management

and identify any trends or

fluctuations in inventory Total 66180

levels. 2006 Q1 3518
Total 3518

Figure 4: Inventory by

The table titled "Inventory by Quarter" shows the total inventory for each quarter in
2005 and 2006. In 2005, the inventory levels started at 85,338 in Q2 and increased
significantly to 281,142 in Q3. The total inventory for 2005, combining Q2 and Q3,
was 366,480.Moving on to 2006, the inventory levels decreased drastically to 3,518
in Q1.

Total Revenue by Store:

.) o _ Total Revenue by Store
This report provides insight into the total

Store Id Rental cost Quanti Total R
revenue made by each store across the : e e
years in terms of rental cost and quantity 099 15711 15553.89 €
rented. This data gives relevant ;zz o 12085.27 €
stakeholders an idea on how the stores P Sl
are performing. 399 9346 3729054 €
4.99 23542 117474.58 €
From this report we can see the overall e ¢ Ll
599 11726 70238.74 €
revenue recqrded by store1, and we are 699 s e
also able to filter the table by the 798 % 78204 €
different stores to get a view of the total e e i
revenue 8.99 4235 38072.65 €
. 9.98 33 32934 €
9.99 2421 24185.79 €
10.99 1107 12165.93 €
11.99 75 899.25 €

Figure 5: Revenue by

Movies by Category:

This report produces a drill down table to allow stakeholders view various movies in
each movie categories and get a hang of their ratings, the total quantity, and their

availability status.

Year Film Category Film Name Ratings Quantity Stock status
Name
2005 @ Action 183240
Total 183240
2006 ®m Action 1759
Total 1759
Figure 6: Quantities by Movie Category

Movies with the Most Quantity:
This analysis allows stakeholders identify movies with the most quantities in the
database. With this, it is easy to tell what movie are being prioritized and sorted after.

TOP 10 MOVIES IN THE DATABASE
RANKED BY INVENTORY COUNT

Providing insights into the most popular movies in terms
of availability within the inventory.

BUCKET BROTHERH.. [578
ROCKETEER MOTHE.. [540
scaLAWAG DUCK [514
FORWARD TEMPLE [514
GRIT CLOCKWORK [512
sucaLer HARDLY [=05
rRiDGEMONT suem.. [o2
IDOLS SNATCHERS [500
RUSH GOODFELLAS [403
rosaers JOON [403

Figure 7: Movies with the most quantities

From this we can see that the Bucket Brothers and the Rocketeer mothers have the
most inventory quantities in the database.

Most Expensive Movies:

This analysis enables stakeholders to identify movies with high rental cost. With this
the business takes note of movies that provides the most revenue and prioritize
them.

MOST EXPENSIVE MOVIES IN THE DATABASE
RANKED BY RENTAL COST

Offering insights into the top 10 most expensive movies to
rent in the system.

TELEGRAPH VOYAGE $231.73
WIFE TURN $223.69
ZORRO ARK $214.69
GOODFELLAS SALUTE $209.69
SATURDAY LAMBS $204.72
TITANS JERK $201.71
TORQUE BOUND $198.72
HARRY IDAHO $195.70
INNOCENT USUAL $191.74
HUSTLER PARTY $190.78
From this Figure 8: Top 10 most expensive movies table, we can see

the Telegraph Voyage and Wife Turn movies have the higher rental cost and thus
potentiality to generate more revenue.

Inventory Distribution Across Stores:
This analysis enables stakeholders keep stock of the total number of inventories
across the business stores.

TOTAL STORE INVENTORY
ANALYSIS

Providing an overview of the overall
inventory across the stores.

Store 1
90,470

Store 2
94,529

Global Inventory Figure 9 Inventory Per Store Distribution:

This analysis enables stakeholders to monitor the spread of the films across the
globe. With this, managers can tell where each movies rented are currently located,
and what quantity of the movies can be found in these locations.

GLOBAL INVENTORY DISTRIBUTION

Providing insights into the distribution of inventory quantities
across different regions worldwide.

Tuvalu
French Polynesia

Newgggland

© 2024 Mapbox © OpenStreetMap

Figure 10: Distribution of Movies across the globe

SQL VS Graph Databases

SQL (Structured Query Language) and graph databases are two different
approaches to managing and querying data in a database.

SQL databases, also known as relational databases, store data in tables, with each
table consisting of rows and columns. Each row in a table represents a record, and
each column represents a field in the record. Graph databases, on the other hand,
are non-relational databases that store data in a graph-like structure consisting of
nodes and edges. Nodes represent entities, and edges represent the relationships
between them.

In this section, we will compare seven various queries of both SQL and graph
database to get an understanding of how both works. The dataset we will be using is
the Danny's Diner dataset. Find it here.

https://8weeksqlchallenge.com/case-study-1/

Question 1: Write a simple select statement to show the details on the Menu

Table
SQL->
3 o SELECT
4 product_id,
5 product_name,
6 price
7 FROM dannys_diner.menu

0% o 66
ResultGrid |1 4% FilterRows: Q

product_id product_na... price

1 sushi 10

2 curry 15

3 ramen 12
Cypher Query >

Match(me:Menu)
RETURN me.product_id, me.product_name, me.price

==] me.product_id me.product_name
Table
1

1 "sushi"
2 "curry"
3 "ramen’

Question 2: Write a query to show the total revenue generated by each

customer.

me.price

10.0

saL >

e SELECT
S.customer_id AS Customers,
sum(M.price) AS Revenue
From sales AS S
Join menu AS M
on S.product_id= M.product_id

0 00 N O U B W

Group by S.customer_id
100% £ 181
Result Grid | 4% Filter Rows: Q Export: Ef

Customers Revenue

A 76
B 74
C 36

Cypher Query >

1 // Total revenue generated from each customer
2 MATCH (s:Sales)—(me:Menu)
3 RETURN s.customer_id as customer, SUM(me.price) as total_amount_spent

==] customer total_amount_spent
Table
)

A "B" 74.0
Text
2
"A" 76.0
Code
3
"c" 36.0

Question 3: Write a query to show the total revenue generated by each
product.

saL->

0o 4 o WU

9

10
100%

e SELECT
m.product_name AS Products,
m.price As 'Unit Price’,
sum(price) As Revenue
From sales AS s
Join menu as m
on s.product_id= m.product_id
Group by m.product_name, m.price
S0
ultGrid] 4% FilterRows: Q Export: Ef

Products Unit Price Revenue

sushi 10 30
curry 15 60
ramen 12 96

Cypher Query >

1
2

4

// Total revenue generated by each product
MATCH (s:Sales)—>(me:Menu)

RETURN me.product_name as product,
me.price as unit_price,

5 Sum(me.price) as Revenue
product unit_price Revenue
Table
"sushi" 10.0 30.0
o
’ "curry" 15.0 60.0
Code
’ "ramen” 12.0 96.0
Question 4: Write a query to show the number of times each product was

purchased.

saL->

e SELECT
m.product_name AS Products,
Count(s.product_id) AS 'Nubmber of times purchased’
From sales AS s
Join menu as m
on s.product_id= m.product_id

O 00 N o0 e W

Group by product_name
100% SR8 1
Result Grid -1 4% Filter Rows: Q Export: E[

Products Nubmber of times purcha...

sushi 3

curry 4

ramen 8
Cypher Query »>

// Number of Time each product was purchased
MATCH (s:Sales)— (me:Menu)

RETURN me.product_name as product,
count(s.product_id) as Nubmber_of_times_purchased

== product Nubmber_of_times_purchased
Table
,

W N R

A "sushi" 3
Text
2
"curry" 4
Code
3
"ramen" 8

Question 5: Write a query to show the amount spent by each customer before
they became a member.

saL->

3 e Select

4 s.customer_id,

5 Count(s.product_id) as ‘Total item’,
6 sum(m.price) as 'Amount spent'

7 From sales as s

8 Join menu as m

9 on s.product_id = m.product_id

10 Join members as me

11 on s.customer_id = me.customer_id

12 AND s.order_date > me.join_date

=] -

100% il 8:11
ResultGrid [4% Filter Rows: Q Export:

customer_id Total item Amount spe...

B 3 34
A 3 36

Cypher Query->

// Amount spent by each customer before they became a member
MATCH (s:Sales)— (m:Member)

MATCH (s:Sales)—>(me:Menu)

WHERE s.order_date > m.join_date

RETURN s.customer_id AS Customer,

6 count(s.product_id) as Total_item,

sum(me.price) as Amount_spent

N

[2 B R O

8
==] Customer Total_item Amount_spent
Table
1
A "A" 3 36.0
Text
: g 3 34.0

Question 6: Write a query to show the number of days each customer visited
the restaurant?

saL >

3 e SELECT

4 Customer_id AS Customers,

5 count(Distinct(Day(order_date))) As 'Number of days'
) From sales

7 Group by 1;

8

100% 2 1=
Result Grid || 4% Filter Rows: Q Export:

Customers Number of da...

A 4
B 5
C 2
Cypher Query -

1 // Number of days each customer visited the resturant

2 match(s:Sales)

3 Return s.customer_id as customer, count(DISTINCT date(s.order_date))as
Number_of_days

==] customer Number_of_days
Table
1

"A" 4
A
2
"B" 6
Code
"C" 2

Question 7: Write a query to show the details of the products bought on the
first day.

saL >

3 e SELECT

4 s.order_date as Date,

5 m.product_name AS Products,

6 COUNT(s.product_id) AS Quantity,

7 SUM(m.price) AS Revenue

8 FROM sales AS s

9 JOIN menu AS m ON s.product_id = m.product_id
10 WHERE s.order_date =

11 GROUP BY m.product_name4

12

100% S5 il

Result Grid || 4% Filter Rows: Q Export: E[
Date Products Quantity Revenue
2021-01-01 sushi 1 10
2021-01-01 curry 2 30
2021-01-01 ramen 2 24
Cypher Query >

// Number of product bought on the first day

MATCH(s:Sales)—> (me:Menu)

Where s.order date = '2021-01-01"

Return s.order_date as Date, me.product_name as product,COUNT(s.product_id) AS
Quantity, sum(me.price) as Revenue

==] Date product Quantity Revenue
Table

\ "2021-01-01" "sushi" 1 100
{'_X
7 "2021-01-01" "curry” 2 00
"2021-01-01" "ramen” 2 24.0
-
Conclusion

In this report we have successfully shown the process for creating a data
warehouse, extracting, transforming and loading the data warehouse with relevant
data to provide insights to stakeholders. We also went on to give an analytical report
with visuals that are required for making informed decisions. Finally, we showed the
difference between querying a structured relational database and querying a graph
database.

